Okay, Greenhill's Formula can solve for two variables: rate of twist; and bullet length. And while it is, in the last analysis, an estimated solution, I believe you will find the calculated solutions are acceptable solutions.
Sir Alfred Greenhill developed the formula in 1879 to calculate correct barrel twists for conical artillery projectiles that were being developed.
*****
The formula is T x L = 150, where T is rate of twist IN CALIBERS, not inches; and L is length of bullet IN CALIBERS, not inches. You must do a conversion to have these numbers be in inches.
*******
Example --
The optimum rate of twist for Sierras .30-caliber 200-gr MatchKing would be computed as T x L = 150 where:
T=rate of twist
L=bullet length in calibers (1.405/.308) or 4.561688311688
T=150/4.56
T=32.89 calibers
To convert calibers to inches, multiply by the bullet diameter. In this example, (32.89)(.308)=10.1 inches.
According to Greenhills formula, then, the proper rate of twist for the Sierra .30-caliber, 200-gr MatchKing is 1:10.
********
Greenhill's Formula will not inform you that your bullet is being overstabilized. Probably a shotgun-like pattern on your target will be a giveaway.
Also, you cannot use excessive velocity to stabilize a too-long bullet. What is "too long?" Dunno. But if axial rotation is excessive, a yaw with a curving side-to-side curving bullet's path occurs. This Magnus Effect is also what causes a curve ball to break. Doesn't happen in a vacuum, though.